
Trends
Despite recent advances, the patho-
genesis of inflammatory bowel disease
(IBD) remains unknown.

Neuroimmune interactions contribute
to the pathophysiology of intestinal
inflammation, and enteric neuronal
dysfunction during IBD causes consid-
erable morbidity.

Neurotransmitters, neuromodulators,
and cytokines participate in neuroim-
mune signaling, which is often bidirec-
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Recent research has highlighted the importance of the two-way interaction
between the nervous and immune systems. This interaction is particularly
important in the bowel because of the unique properties of this organ. The
lumen of the gut is lined by a very large but remarkably thin surface that
separates the body from the enteric microbiome. Immune defenses against
microbial invasion are thus well developed and neuroimmune interactions are
important in regulating and integrating these defenses. Important concepts in
the phylogeny of neuroimmunity, enteric neuronal and glial regulation of immu-
nity, changes that occur in the enteric nervous system during inflammation, the
fundamental role of serotonin (5-HT) in enteric neuroimmune mechanisms, and
future perspectives are reviewed.
tional and may involve enteric glia.

5-HT is a paracrine, endocrine, and
neurocrine signaling molecule present
in the nervous system and/or mucosal
epithelium of the gut of all vertebrates.

Mucosal 5-HT activates innate and
adaptive immune responses, which pro-
tect against microbial invasion, but may
also damage enteric neurons. Enteric
neuronal 5-HT is neuroprotective, sti-
mulates neurogenesis, and is anti-
inflammatory. Pharmacological altera-
tion of serotonergic mechanisms may
be therapeutically beneficial in IBD.
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Inflammation and Neuroimmunity in the Bowel
Inflammatory bowel diseases (IBD) are chronic intestinal inflammatory conditions that affect
approximately one million individuals in the USA [1]. The prevalence of IBD is increasing nationally
and internationally. Despite significant advances in understanding the pathophysiology of IBD, its
pathogenesis remains unknown and IBD continues to cause a great deal of morbidity.

The intestine is essential for life. It is the site of nutrient ingestion and also of where these
nutrients, many of which are macromolecules, are digested into small molecules that the gut can
absorb. Within the bowel, moreover, there is a resident microbiome, which is a net plus in value
[2] but also a danger that must be restricted to the enteric lumen and prevented from invading [3].
The intestinal lumen is external to the body. The thin barrier that separates the lumen from the
internal milieu of the body, which in most regions of the gut is only one cell thick, allows essential
nutrients to be absorbed but prevents the absorption of toxins and invasion by commensal and
pathogenic organisms. Microbial translocation across the intestinal lining triggers inflammation,
which helps to control infection [3], although inflammation is also capable of inflicting a great deal
of collateral damage to the intestinal wall. Managing digestion, absorption, and protection from
microbial invasion is complicated and requires considerable organization, integration, and rapid
direction of resources to sites where they are most needed. These resources include secretion of
enzymes, ions, mucous, and water, the complex motor patterns that the intestinal smooth
muscle generates, and a variety of hormones. Signaling through the nervous system evolved to
accomplish organization, integration, and rapid direction of resources. In the bowel, the details of
the management of these functions have been delegated to the enteric nervous system (ENS),
which can, uniquely, function independently of CNS control [4]. The brain, of course, powerfully
influences the ENS through sympathetic and parasympathetic nerves, but the bowel and its
microbial content, possibly through the ENS, also reciprocally affect the brain. The intestinal
microbiota can influence satiety, metabolism, and even mood [2,5–7]; moreover, electrical
stimulation of the vagus nerves, which mimics gut–brain signaling, improves memory [8] and
has been employed to treat depression [9]. One of the most important functions of the intestinal
innervation, however, is to modulate intestinal inflammation [10].
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The roles of individual neurotransmitters/neuromodulators in intestinal inflammation have
recently been reviewed [11] and those of tachykinins, in particular, have been extensively
summarized [12]. Instead of a comprehensive examination of the pro- and anti-inflammatory
activities of every transmitter in the gut, we focus on the phylogeny of neuronal regulation of
intestinal inflammation, bidirectional neuroimmune interactions in the regulation and consequen-
ces of intestinal inflammation, as well as the central roles that serotonin plays as a signaling
molecule in triggering, enhancing, and countering inflammation.

Phylogeny of Neuroimmune Interactions
Survival demands that every animal distinguishes between the nutrients it ingests from invaders
and toxins. This ability is so fundamental that it probably arose early in evolution. Defenses
against invasion include innate immune mechanisms such as the secretion of cytokines and
phagocytic activity. These mechanisms appear to have preceded the evolution of adaptive
immunity, which added memory, sophistication, and regulation to the layers of defense.
Secreted signaling molecules function in intercellular communication, a vital component of
adaptive immunity. Many of these molecules are also found in primitive organisms and thus
have been retained in evolution [13]. Some molecules have been re-purposed as additional cells
and systems joined the defensive community and reactions increased in specificity and speed. In
the mammalian bowel, endocrine and neurocrine signaling helps to coordinate and regulate
innate and adaptive immune mechanisms of defense. Macrophages and their dendritic cell
relatives have now transcended their primitive phagocytic ancestors and become nexi of
intercellular communication. These cells interact with the lymphocytic mediators of adaptive
immune responses, and both macrophages and lymphocytes respond to hormonal and
neuronal regulation [13]. Neurotransmission evolved from phylogenetically older methods of
signaling. Hormones and paracrine messengers are employed for intercellular signaling in
animals, such as sponges, that lack a nervous system. Environmental stimuli cause specialized
cells in the epidermis and the intestinal lining of primitive multicellular organisms to secrete
signaling metabolites. The hormones and metabolites that are used for signaling in animals
without a nervous system diffuse throughout the organism to be recognized by target cells with
appropriate receptors. Ultimately, endocrine cells and neurons separated from the epithelium
but both continued to secrete signaling molecules. Endocrine cells secrete into the circulation
while neurons project to individual target cells or even, at synapses, to regions of target cells [14].
Early in evolution, multicellularity led to the development of paracrine signaling, which involves the
secretion of diffusible molecules that act in the neighborhood of the secreting cell. Nevertheless,
even paracrine signaling enables multiple cells to cooperate for the common defense of the
organism. Later, the acquisition of endocrine signaling enabled distant cells to be recruited, with
specificity achieved through molecular recognition in a ligand–receptor relationship. Eventually,
the exquisite anatomical specificity and speed of neuronal conduction were added to the ligand–
receptor relationship to vastly enhance the adaptability and integration of responses.

The evolution of the defensive response is reflected in the mechanisms that are operative in the
mammalian bowel. Paracrine, endocrine, and neurocrine signaling are all utilized; early mecha-
nisms thus were not supplanted as newer ones evolved. The newer mechanisms have been
added to, and may modulate or regulate the primitive original responses that have been retained
as effectors of inflammation. Sponges, for example, contain phagocytic amoeboid cells (arche-
ocytes) that are pluripotent stem cells [15]. These cells contribute not only to nutrient uptake but
also to defense of the whole organism. Some of these primitive phagocytes secrete soluble
signaling molecules, including cytokines and nitric oxide (NO), that are retained as endocrine
and/or neurocrine messengers in higher animals.

The mammalian gut faces a stiff microbial challenge. It must contend with bombardment by a
vast number of potential pathogenic bacteria, fungi, and viruses, while simultaneously
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maintaining homeostasis of a resident community of commensal organisms [16]. The epithelial
surface of the intestine produces a diversity of antimicrobial peptides that help the bowel to meet
its microbial challenges [17]. Paneth and other cells secrete /- and b-defensins, C-type lectins of
the REG3 family, secretory phospholipase A2, and lysozyme when bacterial products activate
receptors these cells express. The management of the secretion of these antimicrobial peptides
is subject to endocrine and neurocrine regulation [16]. The gut thus has a powerful antimicrobial
apparatus. Its safe and efficient operation requires the coordination and integration that the
nervous system uniquely provides.

Enteric Neuronal and Glial Regulation of Immunity
It has increasingly become evident that interactions between the enteric nervous system (ENS)
and the immune system play important roles in the modulation of inflammation [18]. These
interactions involve the action of neurotransmitters, neuromodulators, and cytokines that carry
signals, often bidirectionally, between enteric neurons and immune cells [19,20]. Disappoint-
ingly, neurons do not form traditional synapses with immune cells, which complicates the use of
anatomical tools to investigate neuroimmune interactions; however, axons and immune cells do
form ‘close associations’ that are often interpreted to be the anatomical substrate of functional
interactions [21,22]. In the case of neurons and macrophages, the bidirectional link is dependent
on macrophage secretion of bone morphogenetic protein 2 (BMP2) and neuronal secretion of
colony stimulating factor 1 [22]. This muscularis macrophage–ENS communication is responsive
to intestinal microbiota and also may enhance interactions between the ENS and the immune
system of the bowel. Once ‘close associations’ have been established, nerves can swiftly
modulate inflammation; for example, sympathetic nerves to the gut quickly protect tissues from
bacteria-induced inflammatory damage [23]. Norepinephrine from the sympathetic axons does
this by activating b2-adrenoceptors on muscularis macrophages. Transmitters that neurons
secrete can positively (e.g., tachykinins/NK1 receptors) or negatively (e.g., acetylcholine//7
nicotinic receptors) affect the severity of inflammatory responses of the bowel, and thus neurons
may not merely be passive bystanders in intestinal inflammation and IBD [10]. Certainly, the
activity of neurons during inflammation has profound consequences for gastrointestinal (GI)
secretion and motility [24].

Inflammation may have important consequences for neurons and their relationship to enteric
glia. It has become evident that enteric glia, which together with neurons comprise the ENS, are
not simply the ‘glue’ that holds neurons and neurites of the ENS together, but are active
participants in neuroimmune regulation and other neuroeffector mechanisms [25,26]. Enteric
glia, for example, may help to maintain the intestinal barrier and exert neuroprotective effects.
Neurons very much need protection when an intestinal inflammatory response is in high
dudgeon. Intestinal inflammation can be destructive to enteric neurons, which may be killed
during the reaction, in an act of ultimate betrayal by their glial partners [27,28]. During inflam-
mation, purines stimulate P2X7 receptors, which activate pannexin-1 channels in neurons.
Neurons then secrete purines (perhaps ATP) that stimulate P2Y1 receptors on glia. These
receptors activate glia, which are then activated and induced to synthesize NO, which opens
connexin-43 hemichannels in their plasma membrane that allow even more purine to be
released. The glial purine then stimulates neuronal P2X7 receptors, which execute the neurons.

The idea that glia can act in a nurturing, protective fashion for the neurons they ensheath would
seem to be at odds with the concept that they play the role of inflammation-induced executioner.
One finding certainly suggesting that glia are anti-inflammatory was the observation that
acyclovir-driven glial ablation in transgenic mice that express herpes simplex thymidine kinase
in cells that express the glial marker, glial fibrillary acidic protein (GFAP), initiates a fulminant and
lethal inflammation of the ileum [29]. Cells that are not glia, however, may express GFAP. In the
CNS, neuronal stem cells express GFAP [30], and the GFAP-expressing cells of the gut that give
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rise to neurons may thus be stem cells [31]. Toxic products may also diffuse from acyclovir-
ablated glia to affect other types of cell; moreover, many enteric glia do not express GFAP [32].
Enteric glia, furthermore, are not homogenous. Instead they exhibit a remarkable diversity,
differing in the various layers of the gut wall, and possibly also along its length [26,33,34]. Enteric
glial ablation, furthermore, which does not target GFAP, does not cause intestinal inflammation
[35]. It is thus possible that it is not the glial ablation that occurs in response to acyclovir in GFAP::
thymidine kinase mice that causes inflammation; that is, the inflammation may not be cell-
autonomous. A more comprehensive marker for enteric glia than GFAP is proteolipid protein-1
(PLP1) [32], which together with S-100b appears to be found in almost all enteric glia throughout
the length of the bowel in each of its layers. Glial ablation in mice that express diphtheria toxin
driven from the Plp1 promoter is not accompanied by intestinal inflammation [36]. The ability of
enteric glia to prevent intestinal inflammation is therefore, at a minimum, questionable. On the
other hand, no matter whether during inflammation enteric glia protect or kill their associated
neurons, evidence suggests that enteric neurons can develop from Sox10-expressing enteric
glial precursor cells and that intestinal inflammation stimulates glia to generate new neurons [37].
Enteric glia also continue to be generated and multiply during life. New enteric glia appear to be
generated primarily in the myenteric plexus, but the nascent glial cells then have the ability to
migrate, under the attractive guidance of luminal microbiota, to the enteric mucosa [38]. Enteric
glia, therefore, probably play a dual role in intestinal inflammation – not only as a grim reaper that
kills neurons but also as a savior that, through neurogenesis, undoes the harm that inflammation
causes to the ENS.

Changes in the ENS During Intestinal Inflammation
Changes reported in the ENS in patients with IBD include an increase in numbers of enteric
neurons, altered neurotransmitter synthesis, content, and release, changes in glial cell numbers,
and myenteric ganglionitis [39]. Inflammation also causes multiple changes in the intrinsic motor
circuits of the intestine, including neuronal hyperexcitability, increased synaptic facilitation and
decreased descending inhibitory neuromuscular transmission that appears to be related to an
attenuation of purinergic transmission [24,40–46]. These changes are associated with a resul-
tant loss of myenteric neurons–and can ultimately lead to long-lasting disruptions in colonic
motor activity [24,47]. There is also data to suggest, however, that inflammation-induced
neuroplasticity can increase the number of enteric neurons [48] and contribute to disrupted
motility or, conversely, that a pre-existing excess of enteric neurons may actually predispose
individuals to intestinal inflammatory disease [10].

Dysfunction of the bowel is found in non-inflamed regions, as well as in the portions of the gut
that display obvious inflammation [49]. This dysfunction is associated with long-lasting changes
in enteric neural circuits. The ENS dysfunction that inflammation causes induces secretion, as
well as motility, to become abnormal, even in non-inflamed portions of the intestine. In animals
with trinitrobenzene sulfonic acid (TNBS)-induced colitis, non-cholinergic secretion was
decreased significantly in the ileum, even though inflammation could not be detected in ileal
tissue [49]. This secretory change was associated with a dramatic reduction of slow excitatory
synaptic transmission in VIP-expressing secretomotor neurons of the submucosal plexus. In
addition, ileal submucosal cholinergic neurons were more excitable and action potentials in
intrinsic primary afferent neurons (IPANs) were broader than in the absence of colitis. Although
nothing can yet be said about the mechanism by which inflammation in the colon disturbs the
ENS in the ileum, it is clear that altered neuronal function is profound and widespread in the
bowel even when inflammation appears to be confined. As a result, global intestinal dysfunction
can be expected from inflammation as the regulatory apparatus of the bowel inappropriately
adapts to an inflammatory insult. It is possible that neurons cause inflammation to spread to the
small intestine as a result of even highly localized lesions in the colon. When a small region of
colon is cauterized, proinflammatory cytokine secretion increases with an accompanying
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decrease in alanine absorption as far proximally as the duodenum [50]. A long-lived hyperexcit-
ability characterizes small intestinal intrinsic primary afferent neurons after TNBS-induced colitis
that persists for weeks after resolution of the colitis [51]. A similar excitation persists after acute
infection of the bowel [52] and may contribute to postinfectious IBS [52,53].

Serotonin
One of the most fundamental paracrine/neurocrine messengers found in the epithelium of the
mammalian bowel is 5-HT. This signaling molecule is abundant in the bowel of cyclostomes,
teleosts, amphibians, and reptiles [54,55]. 5-HT-producing enterochromaffin (EC) cells are
located in the epithelial lining of the gut of almost all vertebrates [56] and, where they are
not found, the mucosa receives a serotonergic innervation from intrinsic enteric neurons [57].
The EC cells that secrete 5-HT are the most numerous of the enteroendocrine cells of the gut
[58] and, in contrast to other types of enteroendocrine cell, which are more limited in location, EC
cells are found throughout the bowel, from stomach through colon [59].

The biosynthesis of 5-HT depends on the hydroxylation of tryptophan, which in the gut is
catalyzed by tryptophan hydroxylase 1 (TPH1) and TPH2. Each is a separate gene product.
TPH1 is the rate-limiting enzyme for 5-HT biosynthesis in EC cells and, in rats and mice, mast
cells, while TPH2 is the relevant isoform in neurons [60–63]. 5-HT signals through members of
seven groups of 5-HT receptor, all but one of which, the ligand-gated ion channel 5-HT3
receptor [64], are G protein-coupled. At least 15 individual 5-HT receptor subtypes have been
identified in the bowel [65]. Enteric neurons express 5-HT1A [66], 5-HT3 [67], 5-HT4 [68,69], and
5-HT7 receptors [70,71], which participate in the regulation of GI motility, while immune effector
cells express the 5-HT2A, 2B, 2C, 5-HT3, 5-HT4, and 5-HT7 receptor subtypes [72].

After 5-HT stimulates one of its receptors, 5-HT must be removed rapidly to prevent excessive
activation and/or receptor desensitization. 5-HT inactivation requires transmembrane transport
because 5-HT cannot be catabolized extracellularly; moreover, 5-HT is charged at a physiologi-
cal pH and thus poorly traverses plasma-membrane lipid bilayers. The inactivation of 5-HT thus
requires the mediation of a selective plasmalemmal, sodium-dependent serotonin transporter
(SERT) [73]. Inhibition or deletion of SERT amplifies 5-HT-mediated responses, while increases
in SERT activity diminish responses to 5-HT [74]. Within the gut, neurons and enterocytes both
express SERT [75]. Platelets, which are not intrinsic to the bowel, circulate through it and also are
SERT-expressing [76]. Platelet uptake of 5-HT thus contributes to terminating its enteric activity.
Neuronal SERT is important in regulating serotonergic neurotransmission while mucosal and
platelet SERT modulate the paracrine serotonergic signaling of EC cell-derived 5-HT. Platelets
may also be important in enabling EC cell-derived 5-HT to act in an endocrine fashion by
transporting 5-HT to distant targets such as liver [77] and bone [78]. Following reuptake, 5-HT
can be transported into vesicles [79] and reused, or it can be catabolized by a variety of
intracellular enzymes including monoamine oxidase (MAO) [80,81].

5-HT influences the activity of many of the effector cells that participate in adaptive or innate
immune responses in the gut. Macrophages and T cells have even been reported to produce
small amounts of 5-HT [82], while rat and mouse mast cells synthesize, store, secrete, and
take up 5-HT [83]. 5-HT has been found to modulate chemotaxis, leukocyte activation,
proliferation, cytokine secretion, anergy, and apoptosis in immunocytes [82,84]. 5-HT is also
vasoactive and plays a role in cell-mediated immunity by facilitating trafficking of lymphocytes
through post-capillary venules [85–87]. In addition, 5-HT accumulates in sympathetic nerve
terminals in lymphoid tissue and, once in sympathetic terminal axons, enters synaptic vesicles
and is co-released along with norepinephrine [88,89]. The sympathetic innervation in gut-
associated lymphoid tissue (GALT) may thus also be a source of the 5-HT that regulates
intestinal immunity.
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Experiments with animal models have indicated that 5-HT plays important roles in intestinal
inflammation. Initial gain-of-function studies with mice lacking SERT (SERTKO mice) suggested
that 5-HT is proinflammatory. The severity of TNBS-induced colitis and the colitis that occurs
spontaneously in mice lacking IL-10 is each increased significantly when combined with the
deletion of SERT [90]. Later work established that the severity of inflammation is significantly
diminished in mice lacking TPH1 (TPH1KO mice) owing to the selective ablation of mucosal
5-HT [72,91]. The idea emerged from this work that 5-HT released from EC cells enhances
inflammation through an action on 5-HT7 receptors that dendritic cells express [72,92,93]
(Figure 1). Unfortunately, as compelling as this idea seems to be, strong evidence has been
advanced for an equally compelling but contrary hypothesis. Both sides of the argument agree
that dendritic cells in the intestine express the 5-HT7 receptor; however, the contrary evidence
suggests that the dendritic cell 5-HT7 receptor is anti-inflammatory, not proinflammatory [94]. A
5-HT7 antagonist, SB-269970, and the deletion of 5-HT7 receptors were found to increase the
severity of inflammation, and stimulation of the 5-HT7 receptor exerted anti-inflammatory
effects. A difference between the studies is that the proinflammatory side [93] employed a
dose of SB-269970 that was 2500-fold higher than that utilized by the anti-inflammatory
advocates [94]. Conceivably, the higher dose of SB-269970 exerted non-specific effects.
Clearly, 5-HT from EC cells cannot drive inflammation through the 5-HT7 receptors of dendritic
cells if stimulation of these receptors opposes inflammation. The proinflammatory response to
EC cell 5-HT thus remains to be explained. It is clear that 5-HT can raise intracellular cAMP
levels in mature dendritic cells, but dendritic cells express many more 5-HT receptors than only
5-HT7 [95].

Whatever the explanation of the proinflammatory effects of 5-HT turns out to be after inflam-
mation has been initiated, the participation of 5-HT gathers force in a positive feedback loop.
Inflammation leads to the downregulation of SERT, which in turn makes 5-HT more effective
[96,97]. Inflammation also causes the numbers of EC cells to increase, which presumably leads
to still more 5-HT secretion [98,99]. This initiates a self-perpetuating cycle because intestinal
inflammation causes downregulation of SERT that is accompanied by an increase in EC cell
number which can result in higher levels of available 5-HT owing to decreased 5-HT inactivation
and/or larger amounts 5-HT released [96,97,99]. Conversely, the selective pharmacological
5-HT
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Figure 1. Interactions That Modulate
Intestinal Inflammation. 5-HT is stored
in enterochromaffin (EC; yellow) cells of
the gastrointestinal mucosa. The secre-
tion of 5-HT from EC cells is proinflamma-
tory. 5-HT has been postulated to
stimulate 5-HT7 receptors, which dendri-
tic cells (red) express and, in turn, drive
immunity and inflammation. Contrary evi-
dence, however, suggests that the 5-HT7
mediated effect on dendritic cells is inhi-
bitory. Enteric neurons located in ganglia
(green) of the myenteric plexus, between
the circular and longitudinal layers of
smooth muscle, also produce 5-HT.
Terminals of these neurons project to
the submucosal plexus (green). The neu-
ronal pool of 5-HT is anti-inflammatory
and, through 5-HT4 receptor stimulation,
exerts neuroprotective effects and pro-
motes neurogenesis to help enable the
enteric nervous system to survive the det-
rimental effects of inflammation.
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Outstanding Questions
How does mucosal 5-HT drive intesti-
nal inflammation intestinal inflamma-
tion? What role(s) do 5-HT7 receptors
play and do they stimulate or inhibit
dendritic cells? In addition to dendritic
cells, which other effectors of immunity
does 5-HT regulate?

Is the proinflammatory response to
mucosal 5-HT of pathogenic signifi-
cance in IBD?

Polymorphisms in SLC6A4, which enc-
odes the 5-HT transporter, have been
linked to psychiatric disorders and irri-
table bowel syndrome; do they also
predispose to IBD?

What are the specific enteric neuronal
mechanisms that predispose or con-
tribute to the severity of IBD?

Can small-molecule neuroactive drugs
be used in the treatment of IBD?

Do the neuroimmune interactions that
occur during IBS affect the CNS and
alter mood and behavior?

Is GI dysfunction an intrinsic constitu-
ent of primary neuronal diseases, such
as ASD?
inhibition of mucosal but not neuronal TPH, similarly to deletion of TPH1, decreases the severity
of experimental inflammation [63].

The clinical relevance of the proinflammatory effects of 5-HT is not yet totally clear. Serum
serotonin levels have been found to correlate with the severity of pouchitis, which suggests that
the secretion of 5-HT from EC cells is chronically elevated in patients who have received
colectomies for Crohn's disease or ulcerative colitis [100]. SERT transcription is decreased in
individuals with UC, which should enhance responses to secreted 5-HT [101]. The gene
encoding SERT, SLC6A4, moreover, displays a promoter polymorphism, and the LL variant
has been associated with microscopic colitis, suggesting that SLC6A4 might be one the genes
that participates in generating intestinal inflammation [102]. The effects of mechanical forces
and adenosine receptors that drive 5-HT secretion from EC cells have also been found to be
amplified in IBD, providing a mechanism for the chronically increased release of this pro-
inflammatory messenger [103]. The interleukin, IL1b, and bacterial lipopolysaccharide were
each also observed to provoke greater secretion of 5-HT from EC cells isolated from the
mucosa of individuals with Crohn's disease than from those of control subjects [104]. The use of
selective antagonists proved that IL1b and bacterial lipopolysaccharide each act specifically on
their cognate receptors. The enhanced responsiveness of EC cells to bacterial products and a
cytokine during IBD is consistent with the idea that there is self-enhancing, autocatalyic
secretion of 5-HT in IBD. A phenomenon of this sort could therefore contribute to the
pathogenesis of IBD and/or to the severity of gastrointestinal symptoms. One interesting
observation is that, during experimental inflammation in mice and in human patients with
IBD, there is a strong upregulation of 5-HT7 receptor-expressing dendritic cells in the lamina
propria [94]. Whether the stimulation of these receptors is driving inflammation or modulating it,
however, cannot be determined until the above-discussed conflict over the effect of 5-HT7
stimulation of dendritic cells is resolved.

In contrast to mucosal 5-HT, neuronal 5-HT appears to be anti-inflammatory. Although
deletion of TPH1, which is expressed in EC cells, decreases the severity of inflammation,
deletion of TPH2, which is expressed in neurons, makes inflammation far more severe [63]. It
is plausible that this effect is due to 5-HT-mediated neuroprotection [105–107]. This action of
5-HT is 5-HT4-dependent. 5-HT4 receptors promote neurogenesis as well as neuroprotection
[48,105,108]; therefore, serotonin-induced neurogenesis may also contribute to the ability of
the ENS to survive bouts of intestinal inflammation. Because intestinal inflammation is itself
destructive of enteric neurons, 5-HT-mediated neuroprotection may be an essential shield
that evolved to protect the bowel when the intestine mounts an inflammatory response to
defend itself from infection or when inflammation occurs abnormally as a component of a
GI disorder [109]. The previously discussed increase in enteric neurons after inflammation or
in association with IBD may be a reflection of 5-HT-mediated neuroprotection and/or
neurogenesis.

Concluding Remarks and Future Perspectives
Most earlier investigations of IBD, whether of pathogenesis or therapy, have, understandably,
concentrated on innate and adaptive immunity [110]. The neuronal component has not yet
been exploited for insight into causation, contributions to severity, or especially to therapy.
Neuronal contributions to the dysfunction of IBD are, however, as reviewed above, significant.
Neurons have the ability to modulate immunity, and thus the severity of the inflammatory
process and inflammation, in turn, exerts a powerful effect on the ENS. In fact, given the
unique ability of the gut to control its own behavior, and the central role that the ENS plays in
that activity, it is reasonable to expect that the bidirectional interactions of immunoeffectors
and the ENS is responsible, if not for IBD, then at least for some of the GI discomfort patients
with IBD suffer. A great deal of this discomfort is the result of disrupted patterns of GI motility;
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evidence suggests that in ulcerative colitis total bowel transit is slow and stasis occurs in the
proximal colon, although rectosigmoid transit is increased and retrograde contractions
disappear [111], giving rise to diarrhea [112]. Studies in animal models of inflammation
suggest that inflammation inhibits calcium-activated potassium channels in intrinsic primary
afferent neurons, which makes these cells overly excitable [24,113]. The strength of synapses
between interneurons is also increased, while inhibitory purinergic neuromuscular transmis-
sion is diminished [45] as a result of the oxidative stress associated with inflammation [46].
These effects create greatly enhanced activity in the ENS that creates what has been dubbed
an enteric ‘attention deficit disorder’ [24]. The ability of the inflamed bowel to generate
peristaltic reflexes along its proximodistal length is interrupted. Many small-molecule drugs
have been developed over the years to modulate the output of the nervous system and,
although such compounds have been employed effectively in the treatment of IBS, for
example serotonergic agonists and antagonists [114], little is known about the therapeutic
efficacy of neuroactive compounds in IBD.

The emerging idea that the ENS is involved in the regulation of more activities than merely the
motility and secretion of the gut is likely to provide insights into many disorders that are now
classified as idiopathic. Inflammatory or other causes of enteric dysfunction, for example, often
accompany diseases that are thought to be entirely or primarily neuronal. An illustration is
autism spectrum disorder (ASD) in which GI disease is fourfold more common than in the
general population [115]. Hyperfunction of SERT has been found in a subset of patients with
ASD and, when the human gene encoding the hyperfunctional SERT (SERT Ala56) is expressed
in mice, the animals exhibit behaviors reminiscent of ASD [116]. The ENS of the SERT Ala56
mice, moreover, is hypoplastic, GI motility is slow, and intestinal barrier function is compro-
mised [74]. The disorder of the gut in SERT Ala56 mice has been traced to an inability of 5-HT to
stimulate its receptors adequately (the abnormal SERT clears 5-HT too quickly) and the crucial
receptor for enteric neurogenesis was found to be 5-HT4. As a consequence, administration of
a 5-HT4 agonist throughout development completely prevents the SERT Ala56-associated GI
disturbances. These observations illustrate the powerful effects, for better or worse, that
altered neuronal function exerts on the structure of the gut and its subsequent behavior. They
also illustrate the great, but as yet not fully exploited, therapeutic potential of neuroactive
compounds. With respect to IBD, it is known that inflammation is destructive of enteric neurons;
therefore it is possible that 5-HT4-promoted neuroprotection or stimulation of adult neuro-
genesis [48,105,106,108] would be helpful in treating patients with IBD. The large stockpile of
neuroactive drugs in clinical use may thus hold a few gems that, once explored, might help to
alleviate the suffering of patients with IBD and other GI ailments. The future in this area may thus
hold many twists and turns that cannot today be imagined. The expansion of the IBD universe to
include the contributions of the ENS provides a new field for exploration and expansion of
knowledge.
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